### Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 544 minutes.

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Max Level (m)</th>
<th>Max Depth (m)</th>
<th>Max Infiltration (l/s)</th>
<th>Max Control (l/s)</th>
<th>Max Outflow (l/s)</th>
<th>Max Volume (m³)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min Summer</td>
<td>8.398</td>
<td>0.898</td>
<td>1.9</td>
<td>6.5</td>
<td>8.4</td>
<td>234.6</td>
<td>Ο K</td>
</tr>
<tr>
<td>30 min Summer</td>
<td>8.668</td>
<td>1.168</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>305.1</td>
<td>Ο K</td>
</tr>
<tr>
<td>60 min Summer</td>
<td>8.923</td>
<td>1.423</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>371.8</td>
<td>Ο K</td>
</tr>
<tr>
<td>120 min Summer</td>
<td>9.137</td>
<td>1.637</td>
<td>2.0</td>
<td>6.5</td>
<td>8.6</td>
<td>427.6</td>
<td>Ο K</td>
</tr>
<tr>
<td>180 min Summer</td>
<td>9.221</td>
<td>1.721</td>
<td>2.0</td>
<td>6.7</td>
<td>8.7</td>
<td>449.5</td>
<td>Ο K</td>
</tr>
<tr>
<td>240 min Summer</td>
<td>9.250</td>
<td>1.750</td>
<td>2.0</td>
<td>6.8</td>
<td>8.8</td>
<td>457.1</td>
<td>Ο K</td>
</tr>
<tr>
<td>360 min Summer</td>
<td>9.243</td>
<td>1.743</td>
<td>2.0</td>
<td>6.7</td>
<td>8.6</td>
<td>455.3</td>
<td>Ο K</td>
</tr>
<tr>
<td>480 min Summer</td>
<td>9.204</td>
<td>1.704</td>
<td>2.0</td>
<td>6.7</td>
<td>8.6</td>
<td>445.2</td>
<td>Ο K</td>
</tr>
<tr>
<td>600 min Summer</td>
<td>9.164</td>
<td>1.664</td>
<td>2.0</td>
<td>6.6</td>
<td>8.6</td>
<td>434.8</td>
<td>Ο K</td>
</tr>
<tr>
<td>720 min Summer</td>
<td>9.124</td>
<td>1.624</td>
<td>2.0</td>
<td>6.5</td>
<td>8.5</td>
<td>424.3</td>
<td>Ο K</td>
</tr>
<tr>
<td>960 min Summer</td>
<td>9.047</td>
<td>1.547</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>404.2</td>
<td>Ο K</td>
</tr>
<tr>
<td>1440 min Summer</td>
<td>8.903</td>
<td>1.403</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>366.5</td>
<td>Ο K</td>
</tr>
<tr>
<td>2160 min Summer</td>
<td>8.704</td>
<td>1.204</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>314.5</td>
<td>Ο K</td>
</tr>
<tr>
<td>2880 min Summer</td>
<td>8.508</td>
<td>1.008</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>242.2</td>
<td>Ο K</td>
</tr>
<tr>
<td>4320 min Summer</td>
<td>8.139</td>
<td>0.639</td>
<td>1.9</td>
<td>6.5</td>
<td>8.4</td>
<td>166.9</td>
<td>Ο K</td>
</tr>
<tr>
<td>5760 min Summer</td>
<td>7.912</td>
<td>0.412</td>
<td>1.9</td>
<td>6.5</td>
<td>8.4</td>
<td>107.6</td>
<td>Ο K</td>
</tr>
<tr>
<td>7200 min Summer</td>
<td>7.777</td>
<td>0.277</td>
<td>1.8</td>
<td>6.2</td>
<td>8.0</td>
<td>72.4</td>
<td>Ο K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Rain (mm/hr)</th>
<th>Flooded Volume (m³)</th>
<th>Discharge Volume (m³)</th>
<th>Time-Peak (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min Summer</td>
<td>128.843</td>
<td>0.0</td>
<td>243.9</td>
<td>26</td>
</tr>
<tr>
<td>30 min Summer</td>
<td>84.413</td>
<td>0.0</td>
<td>319.7</td>
<td>40</td>
</tr>
<tr>
<td>60 min Summer</td>
<td>52.662</td>
<td>0.0</td>
<td>398.9</td>
<td>70</td>
</tr>
<tr>
<td>120 min Summer</td>
<td>31.735</td>
<td>0.0</td>
<td>480.8</td>
<td>128</td>
</tr>
<tr>
<td>180 min Summer</td>
<td>23.281</td>
<td>0.0</td>
<td>529.1</td>
<td>186</td>
</tr>
<tr>
<td>240 min Summer</td>
<td>18.577</td>
<td>0.0</td>
<td>562.9</td>
<td>244</td>
</tr>
<tr>
<td>360 min Summer</td>
<td>13.477</td>
<td>0.0</td>
<td>612.5</td>
<td>360</td>
</tr>
<tr>
<td>480 min Summer</td>
<td>10.732</td>
<td>0.0</td>
<td>650.4</td>
<td>424</td>
</tr>
<tr>
<td>600 min Summer</td>
<td>8.987</td>
<td>0.0</td>
<td>680.8</td>
<td>486</td>
</tr>
<tr>
<td>720 min Summer</td>
<td>7.771</td>
<td>0.0</td>
<td>706.4</td>
<td>550</td>
</tr>
<tr>
<td>960 min Summer</td>
<td>6.173</td>
<td>0.0</td>
<td>748.2</td>
<td>682</td>
</tr>
<tr>
<td>1440 min Summer</td>
<td>4.456</td>
<td>0.0</td>
<td>810.1</td>
<td>958</td>
</tr>
<tr>
<td>2160 min Summer</td>
<td>3.212</td>
<td>0.0</td>
<td>875.8</td>
<td>1368</td>
</tr>
<tr>
<td>2880 min Summer</td>
<td>2.543</td>
<td>0.0</td>
<td>924.5</td>
<td>1788</td>
</tr>
<tr>
<td>4320 min Summer</td>
<td>1.828</td>
<td>0.0</td>
<td>996.7</td>
<td>2468</td>
</tr>
<tr>
<td>5760 min Summer</td>
<td>1.445</td>
<td>0.0</td>
<td>1050.3</td>
<td>3128</td>
</tr>
<tr>
<td>7200 min Summer</td>
<td>1.203</td>
<td>0.0</td>
<td>1093.4</td>
<td>3824</td>
</tr>
</tbody>
</table>
### Summary of Results for 100 year Return Period (+30%)

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Max Level (m)</th>
<th>Max Depth (m)</th>
<th>Max Infiltration (l/s)</th>
<th>Max Control (l/s)</th>
<th>Max Outflow (l/s)</th>
<th>Max Volume (m³)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8640 min Summer</td>
<td>7.696</td>
<td>0.196</td>
<td>1.8</td>
<td>5.7</td>
<td>7.6</td>
<td>51.3</td>
<td>O K</td>
</tr>
<tr>
<td>10080 min Summer</td>
<td>7.649</td>
<td>0.149</td>
<td>1.8</td>
<td>5.3</td>
<td>7.1</td>
<td>38.9</td>
<td>O K</td>
</tr>
<tr>
<td>15 min Winter</td>
<td>8.510</td>
<td>1.010</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>2640.0</td>
<td>O K</td>
</tr>
<tr>
<td>30 min Winter</td>
<td>8.814</td>
<td>1.314</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>4320.0</td>
<td>O K</td>
</tr>
<tr>
<td>60 min Winter</td>
<td>9.105</td>
<td>1.605</td>
<td>2.0</td>
<td>6.5</td>
<td>8.5</td>
<td>4190.0</td>
<td>O K</td>
</tr>
<tr>
<td>120 min Winter</td>
<td>9.356</td>
<td>1.856</td>
<td>2.0</td>
<td>6.9</td>
<td>9.0</td>
<td>4800.0</td>
<td>O K</td>
</tr>
<tr>
<td>180 min Winter</td>
<td>9.461</td>
<td>1.961</td>
<td>2.1</td>
<td>7.1</td>
<td>9.2</td>
<td>5120.0</td>
<td>O K</td>
</tr>
<tr>
<td>240 min Winter</td>
<td>9.505</td>
<td>2.005</td>
<td>2.1</td>
<td>7.2</td>
<td>9.3</td>
<td>5230.0</td>
<td>O K</td>
</tr>
<tr>
<td>360 min Winter</td>
<td>9.518</td>
<td>2.018</td>
<td>2.1</td>
<td>7.2</td>
<td>9.3</td>
<td>5270.0</td>
<td>O K</td>
</tr>
<tr>
<td>480 min Winter</td>
<td>9.486</td>
<td>1.986</td>
<td>2.1</td>
<td>7.2</td>
<td>9.2</td>
<td>5180.0</td>
<td>O K</td>
</tr>
<tr>
<td>600 min Winter</td>
<td>9.432</td>
<td>1.932</td>
<td>2.1</td>
<td>7.1</td>
<td>9.1</td>
<td>5040.0</td>
<td>O K</td>
</tr>
<tr>
<td>720 min Winter</td>
<td>9.383</td>
<td>1.883</td>
<td>2.1</td>
<td>7.0</td>
<td>9.0</td>
<td>4910.0</td>
<td>O K</td>
</tr>
<tr>
<td>960 min Winter</td>
<td>9.283</td>
<td>1.783</td>
<td>2.0</td>
<td>6.8</td>
<td>8.9</td>
<td>4650.0</td>
<td>O K</td>
</tr>
<tr>
<td>1440 min Winter</td>
<td>9.079</td>
<td>1.579</td>
<td>2.0</td>
<td>6.5</td>
<td>8.5</td>
<td>4120.0</td>
<td>O K</td>
</tr>
<tr>
<td>2160 min Winter</td>
<td>8.784</td>
<td>1.284</td>
<td>2.0</td>
<td>6.5</td>
<td>8.4</td>
<td>3350.0</td>
<td>O K</td>
</tr>
<tr>
<td>2880 min Winter</td>
<td>8.482</td>
<td>0.982</td>
<td>1.9</td>
<td>6.5</td>
<td>8.4</td>
<td>2560.0</td>
<td>O K</td>
</tr>
<tr>
<td>4320 min Winter</td>
<td>7.969</td>
<td>0.469</td>
<td>1.9</td>
<td>6.5</td>
<td>8.4</td>
<td>1220.0</td>
<td>O K</td>
</tr>
<tr>
<td>5760 min Winter</td>
<td>7.737</td>
<td>0.237</td>
<td>1.8</td>
<td>6.0</td>
<td>7.8</td>
<td>620.0</td>
<td>O K</td>
</tr>
</tbody>
</table>

### Storm Event Details

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Rain (mm/hr)</th>
<th>Flooded Discharge (m³)</th>
<th>Time-Peak (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8640 min Summer</td>
<td>1.035</td>
<td>1129.3</td>
<td>4496</td>
</tr>
<tr>
<td>10080 min Summer</td>
<td>0.912</td>
<td>1160.4</td>
<td>5152</td>
</tr>
<tr>
<td>15 min Winter</td>
<td>128.843</td>
<td>273.1</td>
<td>26</td>
</tr>
<tr>
<td>30 min Winter</td>
<td>84.413</td>
<td>358.1</td>
<td>40</td>
</tr>
<tr>
<td>60 min Winter</td>
<td>52.662</td>
<td>446.8</td>
<td>68</td>
</tr>
<tr>
<td>120 min Winter</td>
<td>31.735</td>
<td>538.5</td>
<td>126</td>
</tr>
<tr>
<td>180 min Winter</td>
<td>23.281</td>
<td>592.6</td>
<td>182</td>
</tr>
<tr>
<td>240 min Winter</td>
<td>18.577</td>
<td>630.4</td>
<td>240</td>
</tr>
<tr>
<td>360 min Winter</td>
<td>13.477</td>
<td>686.0</td>
<td>352</td>
</tr>
<tr>
<td>480 min Winter</td>
<td>10.732</td>
<td>728.4</td>
<td>458</td>
</tr>
<tr>
<td>600 min Winter</td>
<td>8.987</td>
<td>762.5</td>
<td>554</td>
</tr>
<tr>
<td>720 min Winter</td>
<td>7.771</td>
<td>791.1</td>
<td>576</td>
</tr>
<tr>
<td>960 min Winter</td>
<td>6.173</td>
<td>838.0</td>
<td>730</td>
</tr>
<tr>
<td>1440 min Winter</td>
<td>4.456</td>
<td>907.4</td>
<td>1038</td>
</tr>
<tr>
<td>2160 min Winter</td>
<td>3.212</td>
<td>980.9</td>
<td>1484</td>
</tr>
<tr>
<td>2880 min Winter</td>
<td>2.543</td>
<td>1035.6</td>
<td>1932</td>
</tr>
<tr>
<td>4320 min Winter</td>
<td>1.828</td>
<td>1116.5</td>
<td>2552</td>
</tr>
<tr>
<td>5760 min Winter</td>
<td>1.445</td>
<td>1176.4</td>
<td>3168</td>
</tr>
</tbody>
</table>
### Summary of Results for 100 year Return Period (+30%)

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Max Level (m)</th>
<th>Max Depth (m)</th>
<th>Max Infiltration (l/s)</th>
<th>Max Control E (l/s)</th>
<th>Max Σ Outflow (l/s)</th>
<th>Max Volume (m³)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7200 min Winter</td>
<td>7.640</td>
<td>0.140</td>
<td>1.8</td>
<td>5.2</td>
<td>7.0</td>
<td>36.6</td>
<td>O K</td>
</tr>
<tr>
<td>8640 min Winter</td>
<td>7.612</td>
<td>0.112</td>
<td>1.8</td>
<td>4.3</td>
<td>6.1</td>
<td>29.3</td>
<td>O K</td>
</tr>
<tr>
<td>10080 min Winter</td>
<td>7.595</td>
<td>0.095</td>
<td>1.8</td>
<td>3.6</td>
<td>5.4</td>
<td>24.8</td>
<td>O K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storm Event</th>
<th>Rain (mm/hr)</th>
<th>Flooded Volume (m³)</th>
<th>Discharge Volume (m³)</th>
<th>Time-Peak (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7200 min Winter</td>
<td>1.203</td>
<td>0.0</td>
<td>1224.5</td>
<td>3752</td>
</tr>
<tr>
<td>8640 min Winter</td>
<td>1.035</td>
<td>0.0</td>
<td>1264.9</td>
<td>4408</td>
</tr>
<tr>
<td>10080 min Winter</td>
<td>0.912</td>
<td>0.0</td>
<td>1299.7</td>
<td>5136</td>
</tr>
</tbody>
</table>
### Rainfall Details

<table>
<thead>
<tr>
<th></th>
<th>Rainfall Model</th>
<th>FSR</th>
<th>Winter Storms</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Period (years)</td>
<td>100</td>
<td></td>
<td>Cv (Summer)</td>
<td>0.750</td>
</tr>
<tr>
<td>Region</td>
<td>England and Wales</td>
<td></td>
<td>Cv (Winter)</td>
<td>0.840</td>
</tr>
<tr>
<td>M5-60 (mm)</td>
<td>20.000</td>
<td></td>
<td>Shortest Storm (mins)</td>
<td>15</td>
</tr>
<tr>
<td>Ratio R</td>
<td>0.405</td>
<td></td>
<td>Longest Storm (mins)</td>
<td>10080</td>
</tr>
<tr>
<td>Summer Storms</td>
<td>Yes</td>
<td></td>
<td>Climate Change %</td>
<td>+30</td>
</tr>
</tbody>
</table>

### Time Area Diagram

<table>
<thead>
<tr>
<th>Time (mins) From:</th>
<th>Area (ha) To:</th>
<th>Time (mins) From:</th>
<th>Area (ha) To:</th>
<th>Time (mins) From:</th>
<th>Area (ha) To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0.340</td>
<td>4</td>
<td>8</td>
<td>0.340</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>0.330</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Model Details

Storage is Online Cover Level (m) 10.000

### Cellular Storage Structure

<table>
<thead>
<tr>
<th>Invert Level (m)</th>
<th>7.500 Safety Factor</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration Coefficient Base (m/hr)</td>
<td>0.05544 Porosity</td>
<td>0.95</td>
</tr>
<tr>
<td>Infiltration Coefficient Side (m/hr)</td>
<td>0.05544</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Area (m²)</th>
<th>Inf. Area (m²)</th>
<th>Depth (m)</th>
<th>Area (m²)</th>
<th>Inf. Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>275.0</td>
<td>235.0</td>
<td>2.000</td>
<td>275.0</td>
<td>268.5</td>
</tr>
</tbody>
</table>

### Hydro-Brake® Optimum Outflow Control

<table>
<thead>
<tr>
<th>Unit Reference</th>
<th>MD-SHE-0111-7200-2000-7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Head (m)</td>
<td>2.000</td>
</tr>
<tr>
<td>Design Flow (l/s)</td>
<td>7.2</td>
</tr>
<tr>
<td>Flush-Flo™</td>
<td>Calculated</td>
</tr>
<tr>
<td>Objective</td>
<td>Minimise upstream storage</td>
</tr>
<tr>
<td>Application</td>
<td>Surface</td>
</tr>
<tr>
<td>Sump Available</td>
<td>Yes</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>110</td>
</tr>
<tr>
<td>Invert Level (m)</td>
<td>7.500</td>
</tr>
<tr>
<td>Minimum Outlet Pipe Diameter (mm)</td>
<td>150</td>
</tr>
<tr>
<td>Suggested Manhole Diameter (mm)</td>
<td>1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Points</th>
<th>Head (m)</th>
<th>Flow (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Point (Calculated)</td>
<td>2.000</td>
<td>7.2</td>
</tr>
<tr>
<td>Flush-Flo™</td>
<td>0.478</td>
<td>6.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Points</th>
<th>Head (m)</th>
<th>Flow (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick-Flo®</td>
<td>0.985</td>
<td>5.2</td>
</tr>
<tr>
<td>Mean Flow over Head Range</td>
<td>~</td>
<td>5.9</td>
</tr>
</tbody>
</table>

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Flow (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>3.8</td>
</tr>
<tr>
<td>0.200</td>
<td>5.8</td>
</tr>
<tr>
<td>0.300</td>
<td>6.3</td>
</tr>
<tr>
<td>0.400</td>
<td>6.5</td>
</tr>
<tr>
<td>0.500</td>
<td>6.5</td>
</tr>
<tr>
<td>0.600</td>
<td>6.5</td>
</tr>
<tr>
<td>0.800</td>
<td>6.1</td>
</tr>
<tr>
<td>1.000</td>
<td>5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Flow (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.200</td>
<td>5.7</td>
</tr>
<tr>
<td>1.400</td>
<td>6.1</td>
</tr>
<tr>
<td>1.600</td>
<td>6.5</td>
</tr>
<tr>
<td>1.800</td>
<td>6.8</td>
</tr>
<tr>
<td>2.000</td>
<td>7.2</td>
</tr>
<tr>
<td>2.200</td>
<td>7.5</td>
</tr>
<tr>
<td>2.400</td>
<td>7.8</td>
</tr>
<tr>
<td>2.600</td>
<td>8.1</td>
</tr>
<tr>
<td>3.000</td>
<td>8.7</td>
</tr>
<tr>
<td>3.500</td>
<td>9.4</td>
</tr>
<tr>
<td>4.000</td>
<td>10.0</td>
</tr>
<tr>
<td>4.500</td>
<td>10.5</td>
</tr>
<tr>
<td>5.000</td>
<td>11.1</td>
</tr>
<tr>
<td>5.500</td>
<td>11.6</td>
</tr>
<tr>
<td>6.000</td>
<td>12.1</td>
</tr>
<tr>
<td>6.500</td>
<td>12.6</td>
</tr>
<tr>
<td>7.000</td>
<td>13.0</td>
</tr>
<tr>
<td>7.500</td>
<td>13.5</td>
</tr>
<tr>
<td>8.000</td>
<td>13.9</td>
</tr>
<tr>
<td>8.500</td>
<td>14.3</td>
</tr>
<tr>
<td>9.000</td>
<td>14.7</td>
</tr>
<tr>
<td>9.500</td>
<td>15.1</td>
</tr>
</tbody>
</table>